« If we fail to act, we are looking at an almost unthinkable scenario where antibiotics no longer work and we are cast back into the dark ages of medicine »
David Cameron, former UK Prime Minister
Des centaines de millions de vies sont en jeu. En effet, l’OMS a fait de l’antibiorésistance sa priorité numéro une à l’échelle globale en démontrant notamment que la résistance aux antibiotiques pourra entrainer plus de 100 millions de morts par an d’ici 2050 et qu’elle cause déjà actuellement environ 700 000 morts par an, dont 33 000 en Europe. Parmi les différentes stratégies thérapeutiques pouvant être mises en place, il y a celle de l’utilisation des bactériophages, approche alternative ancienne et délaissée à laquelle l’Intelligence Artificielle pourrait bien donner un coup de jeune. Explications.
Les stratégies pouvant être mises en place pour lutter contre l’antibiorésistance
Les actions et recommandations de santé publique visant globalement à réduire l’utilisation des antibiotiques, nombreuses et indispensables, constituent le premier pilier de lutte contre l’antibiorésistance. Par exemple :
- La poursuite des campagnes de communication visant à lutter contre la prescription et la consommation excessives d’antibiotiques (qui, en France, ne connaît pas le slogan : « Les antibiotiques, ce n’est pas automatique ! » ?)
- L’amélioration des conditions sanitaires afin de réduire la transmission des infections et par conséquent les besoins en utilisation des antibiotiques. Cette mesure concerne de très nombreux pays en voie de développement dont les approvisionnements défaillants en eau potable provoquent, notamment, de nombreuses diarrhées infantiles.
- La réduction de l’utilisation d’antibiotiques dans l’élevage, en interdisant l’ajout de certaines molécules antibiotiques dans l’alimentation des animaux destinés à l’alimentation humaine.
- La réduction de la pollution environnementale avec des molécules antibiotiques, en travaillant notamment à l’établissement de standards anti-pollution plus contraignants pour les sites fabricants de l’industrie pharmaceutique.
- L’amélioration et la mise en place de structures globales de surveillance de la consommation humaine et animale d’antibiotiques et de l’apparition de souches bactériennes multi-résistantes.
- La mise en œuvre plus fréquente de tests diagnostiques afin de limiter l’usage d’antibiotiques et de sélectionner de manière plus précise quelle molécule est nécessaire.
- L’utilisation plus massive de la vaccination
Le deuxième pilier de la lutte est constitué par des stratégies thérapeutiques novatrices destinées à combattre les souches bactériennes multirésistantes face auxquelles les antibiotiques conventionnels sont impuissants. Nous pouvons notamment citer :
- La phagothérapie : c’est-à-dire l’utilisation de bactériophages, virus prédateurs naturels des bactéries. Les phages peuvent être utilisés dans les cas thérapeutiques où ils peuvent être directement mis au contact des bactéries (plaies infectées, grands brulés, etc) mais pas dans les cas où ils devraient être injectés dans l’organisme, car ils seraient alors détruits par le système immunitaire du patient.
- L’utilisation d’enzybiotiques: des enzymes, principalement issues des bactériophages à l’instar de la lysine, pouvant être utilisées afin de détruire des bactéries. A l’heure où nous écrivons ces lignes, cette approche est toujours à un stade expérimental.
- L’immunothérapie avec notamment l’utilisation d’anticorps : De nombreux anticorps monoclonaux anti-infectieux – ciblant spécifiquement un antigène viral ou bactérien – sont en développement. Le palivizumab dirigé contre la protéine F du virus respiratoire syncytial a, quant à lui, été approuvé par la FDA dès 1998. La piste de l’utilisation synergique d’anticorps anti-infectieux et de molécules antibiotiques est également à l’étude.
Chacune des stratégies – thérapeutique ou de santé publique – proposées peut être mise en application et voir son effet décuplé à l’aide de la technologie. L’une des utilisations les plus originales de l’Intelligence Artificielle concerne l’automatisation du design de nouveaux bactériophages.
Présentation des bactériophages
Les bactériophages sont des virus à capside n’infectant que des bactéries. Ils sont naturellement répandus dans tous les espaces de la biosphère et leur matériel génétique peut être de l’ADN, dans la très grande majorité des cas, ou de l’ARN. Leur découverte n’est pas récente et leur utilisation thérapeutique a déjà un long historique, en effet, dès les années 1920 ils commencent à être utilisé en médecine humaine et animale. Leur usage a été progressivement abandonné dans les pays occidentaux, principalement en raison de la facilité d’utilisation des antibiotiques et du fait que les essais cliniques menés sur les phages ont été relativement peu nombreux, leur utilisation étant essentiellement basée sur l’empirisme. Dans d’autres pays du monde, à l’instar de la Russie et des anciens pays de l’URSS, la culture de l’utilisation des phages dans la santé humaine et animale est restée très forte : ils sont souvent disponibles sans ordonnance et utilisés en première intention.
Le mécanisme de destruction des bactéries par les bactériophages lytiques
Il existe deux types principaux de bactériophages :
- D’une part les phages lytiques, qui sont les seuls utilisés en thérapeutique et ceux sur lesquels nous nous concentrerons dans la suite de cet article, qui détruisent la bactérie en détournant la machinerie bactérienne à leur profit afin de se multiplier.
- D’autre part, les phages tempérés, qui ne sont pas utilisés en thérapeutique mais utiles expérimentalement car ils permettent d’ajouter des éléments génomiques à la bactérie, lui permettant potentiellement de moduler sa virulence. Le cycle du phage est nommé lysogénique.
Le schéma ci-dessous présente le cycle de vie d’un phage lytique :
Ainsi, et c’est ce qui fait toute la puissance des phages lytiques, ils sont dans une relation « hôte-parasite » avec les bactéries, ils ont besoin de les infecter et de les détruire pour se multiplier. L’évolution des bactéries va sélectionner principalement des souches résistantes, comme dans le cas de la résistance aux antibiotiques, cependant, à la différence des antibiotiques qui n’évoluent pas – ou plutôt qui évoluent lentement, au rythme des découvertes scientifiques de l’espèce humaine, les phages pourront également s’adapter afin de survivre et de continuer à infecter les bactéries, il s’agit d’une sorte de course à l’évolution entre les bactéries et les phages.
L’utilisation possible de l’Intelligence Artificielle
L’une des particularités des phages est, qu’à l’inverse de certains antibiotiques à large spectre, ils sont la plupart du temps très spécifiques à une souche bactérienne. Ainsi, lorsque l’on souhaite créer ou trouver des phages appropriés au traitement du patient, il faut suivre un processus complexe et souvent relativement long, alors même qu’une course contre la montre est parfois engagée pour la survie du patient : il faut identifier les bactéries, ce qui suppose de cultiver des prélèvements réalisés chez le patient, de caractériser le génome bactérien puis de déterminer quel phage sera le plus à même de combattre l’infection. Cette étape était, jusqu’à peu, un processus itératif de tests in-vivo, très gourmand en temps, or, comme le souligne Greg Merril, le CEO de la start-up Adaptive Phage Therapeutics, développant un algorithme de sélection des phages à partir des génomes bactériens : « Quand un patient est sévèrement touché par une infection, chaque minute est importante ».
En effet, pour rendre la phagothérapeutique applicable à très large échelle, il est nécessaire de pouvoir déterminer rapidement et à coût moindre quel phage sera le plus efficace. C’est ce que permet déjà et permettra de plus en plus l’alliance de deux technologies : le séquençage à haute fréquence et le machine learning. Ce dernier permettant de traiter les masses de données générées par le séquençage génétique (génome du bactériophage ou de la souche bactérienne) et de détecter des patterns par rapport à une base de données expérimentales lui indiquant qu’un Phage au génome X a été efficace contre une bactérie au génome Y. L’algorithme est alors en mesure de déterminer les chances de réussite de toute une bibliothèque de phages sur une bactérie donnée et de déterminer quel sera le meilleur sans réaliser de longs tests itératifs. Comme chaque domaine basé sur le « test-and-learn », le choix des phages peut ainsi être automatisé.
Outre la détermination du meilleur hôte pour un bactériophage donné (et réciproquement) discutée ci-dessous, les principaux cas d’usage décrits de l’intelligence artificielle dans l’utilisation des phages sont :
- La classification des bactériophages : L’organisme en charge de la classification est l’International Committee on Taxonomy of Viruses (ICTV). Plus de 5000 bactériophages différents sont décrits et la famille principale est celle des Caudovirales. Les approches traditionnelles de classification des bactériophages reposent sur la morphologie de la protéine virion qui sert à injecter le matériel génétique dans la bactérie cible. Ces approches sont basées essentiellement sur des techniques de microscopie électronique. Une littérature scientifique de plus en plus fournie permet de considérer le Machine Learning comme une alternative pertinente permettant une classification des bactériophages plus fonctionnelle.
- La prédiction des fonctionnalités des protéines du bactériophages : Le Machine Learning peut notamment être utile pour élucider les mécanismes précis de la PVP (Phage Virion Protein), impliquée, comme mentionné plus haut, dans l’injection de matériel génétique dans la bactérie.
- La détermination du cycle de vie des bactériophages : Ainsi que nous l’avons vu plus haut dans cet article, il existe deux catégories de phages : lytiques ou tempérés. Traditionnellement, la détermination de l’appartenance d’un phage à l’une de ces deux familles était déterminée par une culture et des tests in-vitro. La tâche est plus ardue que l’on pourrait le penser car sous certaines conditions de stress et en présence de certains hôtes, les phages tempérés ont la capacité, pour survivre d’effectuer des cycles lytiques. A l’heure actuelle, les algorithmes de PhageAI sont en mesure de déterminer à 99% dans quelle catégorie se situe le phage.
Il est également possible, et c’est ce qu’illustre le schéma ci-dessous, pour des bactéries rares et particulièrement résistantes de combiner les techniques vues précédemment aux techniques de biologie synthétique et de bio-engineering afin de créer rapidement des phages « sur-mesure ». Dans ce cas d’usage tout particulièrement, l’Intelligence Artificielle offre à observer tout son potentiel dans le développement d’une médecine ultra-personnalisée.
***
En dépit de son utilité, la phagothérapie est, dans de nombreux pays occidentaux encore compliquée à mettre en place réglementairement. En France, cette thérapeutique est possible dans le cadre d’une Autorisation Temporaire d’Utilisation (ATU) nominative aux conditions que le pronostic vital du patient soit engagé ou que son pronostic fonctionnel soit menacé, que le patient soit dans une impasse thérapeutique et qu’il soit l’objet d’une infection mono-microbienne. L’utilisation de la thérapeutique doit par ailleurs être validée par un Comité Scientifique Spécialisé Temporaire Phagothérapie de l’ANSM et un phagogramme – test in vitro permettant d’étudier la sensibilité d’une souche bactérienne aux bactériophages, à la manière des antibiogrammes – présenté avant la mise sous traitement. Devant ces difficultés multiples, de nombreuses associations de patients se mobilisent afin de militer pour un accès simplifié à la phagothérapie. Avec l’aide de l’Intelligence Artificielle, de plus en plus de phagothérapeutiques pourront être développées, comme l’a illustré cet article et devant l’urgence et l’ampleur de la problématique de l’antibiorésistance, il est indispensable de préparer dès à présent le cadre réglementaire dans lequel les patients pourront accéder aux différents traitements alternatifs, dont les bactériophages. Le combat n’est pas encore perdu et l’Intelligence Artificielle sera pour nous un allié déterminant.
Vous souhaitez discuter du sujet ? Vous souhaitez prendre part à la rédaction d’articles de la Newsletter ? Vous souhaitez participer à un projet entrepreneurial relatif à la PharmaTech ?
Contactez-nous à l’adresse hello@resolving-pharma.com ! Rejoignez notre groupe LinkedIn !
Pour aller plus loin :
- Réseau Bactériophage France, afin de découvrir l’actualité de la recherche sur la phagothérapie : https://site.phages.fr/
- Pour tout comprendre aux bactériophages : https://planet-vie.ens.fr/thematiques/microbiologie/virologie/les-bacteriophages-de-leur-decouverte-a-leurs-utilisations
- Sur l’antibiorésistance : Tackling Drug-Resistant Infections Globally : Final report and recommendations. The review on antimicrobial resistance, chaired by Jim O’Neill – May 2016
- Des biotechs spécialisées dans les bactériophages : https://www.pherecydes-pharma.com/ ; https://www.armatapharma.com/ ; http://www.aphage.com/
- Colomb-Cotinat, Lacoste, Coignard, Vaux, Brun-Boisson, Jarlier ; « Morbidité et mortalité des infections à bactéries multi-résistantes aux antibiotiques en France en 2012 : Etude Burden BMR, Rapport de Juin 2015.
- Jean-Paul Pirnay ; Phage Therapy in the year 2035 ; Frontiers in Microbiology, Hypothesis and Theory ; 03, June 2020
- Ravat F, Jault P, Gabard J. Bactériophages et phagothérapie: utilisation de virus naturels pour traiter les infections bactériennes. Ann Burns Fire Disasters. 2015;28(1):13-20.
- Christine Klinger-Hamour, Véronique Caussanel et Alain Beck ; Anticorps thérapeutiques et maladies infectieuses ; Anticorps monoclonaux en thérapeutique, Volume 25, Number 12, Décembre 2009, pages 1116, 1120 ; https://doi.org/10.1051/medsci/200925121116
- Nami et al. Application of machine learning in bacteriophage research ; BMC Microbiology (2021) 21:193 ; https://doi.org/10.1186/s12866-021-02256-5
- Menglu Li et al. A Deep Learning-Based Method for identification of Bacteriophage-Host Interaction ; IEEE/ACM Transactions of Computational Biology and Bioinformatics
- Artificial Intelligence car support killer viruses in the war against superbugs: https://futurism.com/neoscope/artificial-intelligence-support-killer-viruses-war-against-superbugs
- Dimitri Boeckaerts et al ; Predicting bacteriophage hosts based on sequences of annotated receptor-binding proteins ; Scientific Reports | (2021) 11:1467 | https://doi.org/10.1038/s41598-021-81063-4
- Bryan R. Lenneman et al. Enhancing phage therapy through synthetic biology and genome engineering ; Current Opinion in Biotechnology 2021, 68:151–159
- Piotr Tynecki et al. PhageAI – Bacteriophage Life Cycle Recognition with Machine Learning and Natural Language Processing ; bioRxiv preprint doi: https://doi.org/10.1101/2020.07.11.198606
- Faced with failing antibiotics, scientists are using killer viruses to fight superbugs : https://www.technologyreview.com/2018/01/29/67368/faced-with-failing-antibiotics-scientists-are-using-killer-viruses-to-fight-superbugs/
Ces articles pourraient vous intéresser
Web3 et Recherche Scientifique, Interview de Kamil Ramdani – Nosty
Introduction à la DeSci
Interview de Christophe Baron, Fondateur de Louis App : « Des NFTs pour favoriser la prévention des maladies et la longévité »
L’intelligence artificielle contre les infections bactériennes : le cas de bactériophages
Vers des essais cliniques virtuels ?
Catégories
Pour s’inscrire gratuitement à la Newsletter mensuelle, cliquez ici.
Vous souhaitez prendre part à la rédaction d’articles de la Newsletter ? Vous souhaitez participer à un projet entrepreneurial sur ces thématiques ?
Contactez-nous à l’adresse hello@resolving-pharma.com ! Rejoignez notre groupe LinkedIn !